
Hierarchical Temporal Logic Task and Motion Planning
for Multi-Robot Systems

Zhongqi Wei∗,1, Xusheng Luo∗,1 and Changliu Liu1

Abstract—Task and motion planning (TAMP) for multi-robot
systems, which integrates discrete task planning with continuous
motion planning, remains a challenging problem in robotics.
Existing TAMP approaches often struggle to scale effectively
for multi-robot systems with complex specifications, leading to
infeasible solutions and prolonged computation times. This work
addresses the TAMP problem in multi-robot settings where tasks
are specified using expressive hierarchical temporal logic and task
assignments are not pre-determined. Our approach leverages
the efficiency of hierarchical temporal logic specifications for
task-level planning and the optimization-based graph of convex
sets method for motion-level planning, integrating them within
a product graph framework. At the task level, we convert
hierarchical temporal logic specifications into a single graph,
embedding task allocation within its edges. At the motion level,
we represent the feasible motions of multiple robots through
convex sets in the configuration space, guided by a sampling-
based motion planner. This formulation allows us to define the
TAMP problem as a shortest path search within the product
graph, where efficient convex optimization techniques can be
applied. We prove that our approach is both sound and complete
under mild assumptions. To enhance scalability, we introduce
multiple pruning heuristics that reduce the product graph size,
enabling efficient planning for high-dimensional multi-robot sys-
tems. Additionally, we extend our framework to cooperative pick-
and-place tasks involving object handovers between robots. We
evaluate our method across various high-dimensional multi-robot
scenarios, including simulated and real-world environments with
quadrupeds, robotic arms, and automated conveyor systems. Our
results show that our approach outperforms existing methods in
execution time and solution optimality while effectively scaling
with task complexity.

I. INTRODUCTION

Multi-robot systems often need to collaborate effectively
and manage complex tasks. This has led to a growing demand
for planning systems that can enable robots to efficiently
execute long-horizon, intricate tasks. This challenge is com-
monly framed as a task and motion planning (TAMP) problem,
formulated as a combination of discrete task planning and
continuous motion planning [1]. TAMP is known as an NP-
hard problem, particularly challenging for high-dimensional
multi-robot systems tasked with complex and long-horizon
operations. Traditionally, researchers in various fields have
addressed these problems separately. To simplify the issues,
certain assumptions are often employed, such as the exis-
tence of low-level controllers for task planning or the use
of pre-defined tasks in motion planning. However, in real-
world scenarios, predicting the feasibility of motion planning
given a specific task specification is difficult. A feasible task
description might cause an infeasible motion planning result.
Therefore, traditional TAMP approaches focus on finding
efficient ways to search the space of tasks [2, 3].

Fig. 1: Given the hierarchical temporal logic specifica-
tions (14), which specify transferring the yellow, blue, and red
objects in order, our approach efficiently generates collision-
free trajectories for four robotic manipulators, with a total of
28 degrees of freedom, to collaboratively complete the task in
the shared workspace.

Recently, several methods have emerged that address these
issues by integrating task and motion planning. The combi-
natorial complexity of TAMP can be partially mitigated if
the problem is properly formulated [4–6]. However, those
methods either scale poorly to complex, long-horizon tasks
or struggle with local minima due to the non-convex nature
of the problem. A recent study [7] introduced an innovative
framework that combines Linear Temporal Logic [8], as an
expressive specification language for long-horizon tasks, with
the Graph of Convex Sets (GCS) [9], a near-optimal motion
planner. This unified approach demonstrates scalability to

high-dimensional systems with up to 30 degrees of freedom.
However, the method is limited to single-robot scenarios, as
extending it to multi-robot systems is challenging due to
the NP-hard nature of task allocation. Additionally, the LTL
specifications are computationally intensive. For instance, the
task of sequentially collecting five keys and opening five
doors in [7] required over 40 minutes, with 32 minutes dedi-
cated solely to handling the LTL specifications, reflecting the
double-exponential complexity inherent to this process. More
recently, study [10] proposed a hierarchical structure for LTL
specifications, significantly reducing the computational burden
of handling such specifications. While their planning algorithm
claims to scale to scenarios involving up to 30 mobile robots
under hierarchical LTL specifications, it does not address
collision avoidance and collaboration among robots.

In this work, we address the problem of integrated task
and motion planning (TAMP) for multi-robot systems under
hierarchical temporal logic specifications, encompassing task
allocation, task planning, and motion planning. We exploit the
efficiency of hierarchical temporal logic (LTL) specifications
at the task level and the Graph of Convex Sets (GCS) at
the motion level, integrating both into a unified framework.
Building on ideas from [7], we formulate TAMP under hierar-
chical temporal logic specifications for multi-robot systems as
a shortest-path problem within a product graph. Our proposed
approach tackles several key challenges: converting hierarchi-
cal temporal logic specifications into a graph, addressing the
task allocation complexities introduced by multiple robots, and
efficiently connecting nodes for multiple robots in the graph
of convex sets—extending beyond the existing work [9] that
deals with at most two robots. The shortest-path problem in
the product graph is formulated as a mixed-integer convex
programming (MICP) problem, which can be efficiently solved
using convex relaxation techniques [11]. We theoretically
prove that our approach is both sound and complete under mild
assumptions, and we empirically demonstrate its efficiency
through case studies involving four robotic manipulators. To
manage the complexity of the product graph, we implement
a pruning strategy based on the structure of the tasks. Ad-
ditionally, we extend the framework to scenarios involving
multiple robotic manipulators that require handovers, where
the necessity for handovers is not predetermined. The primary
contributions of this work are as follows:

1) We formulate the multi-robot hierarchical temporal logic
task and motion planning (TAMP) problem as a shortest-
path problem in a product graph.

2) At the task level, we construct a graph for hierarchical
temporal logic specifications and encompass the task
allocation within the edges. To construct the GCS at
the motion level, capturing the dynamics of multi-robot
systems, and inspired by sampling-based motion plan-
ning, we propose an approach named IRIS-RRT, which
efficiently connects the motion space.

3) We develop multiple heuristics to prune the product
graph, significantly improving the computational effi-

ciency of our method.
4) To address collaborative multi-robot pick-and-place tasks,

we adapt the product graph to incorporate handover
constraints and solve the shortest-path problem using
mixed-integer convex programming (MICP).

5) We provide theoretical analyses to prove the soundness
and completeness of our approach under mild assump-
tions.

6) We demonstrate the efficiency of our proposed method for
long-horizon tasks, complex task specifications, and high-
dimensional systems through several examples in both
simulation and hardware. Additionally, if accepted, we
will provide open-source code to reproduce our results.

The remainder of this paper is organized as follows. Section
II reviews related work on task and motion planning and
temporal logic specifications. Section III provides the back-
ground information on graphs of convex sets, linear temporal
logic, and hierarchical LTL specifications. The formulation of
the problem and the underlying assumptions are presented in
Section IV. Our main approach to the problem is described
in Section V. Section VI offers proof of the soundness and
completeness of the proposed approach. The multi-robot task
and motion planning examples are described in Section VII.
Finally, Section VIII discusses the limitations, and Section IX
provides the conclusion of our approach.

II. RELATED WORKS

A. Task and Motion Planning

The task and motion planning (TAMP) aims to identify a
sequence of symbolic actions and corresponding motion plans.
An extensive review of TAMP can be found in [12, 13].
TAMP typically focuses on single-robot scenarios. In this
work, we concentrate on multi-robot cases, as the aspect of
task allocation is not applicable to a single robot. The primary
focus in multi-robot TAMP is on the pick-up and placement of
multiple objects by multiple manipulators, with the objective
of determining which manipulator should pick up which
objects and in what manner. One approach within this category
employs search-based methods. This includes Conflict Based
Search (CBS) [14], Monte-Carlo Tree Search (MCTS) [15],
search in hyper-graphs [16], and search based on satisfiability
modulo theories (SMT) solvers [17]. Another approach utilizes
optimization-based methods. For example, [6] proposed the
logic-geometric program (LGP), which integrates continuous
motion planning and discrete task specifications into opti-
mization problems. Similarly, [18] implicitly assigns actions
based on the solution to a nonlinear optimization problem. Our
work diverges from multi-robot TAMP in that most TAMP
studies do not consider logical or temporal constraints, with
only a handful addressing dependency constraints that emerge
from handover operations. Our approach incorporates these
constraints, adding complexity to task planning and execution.

B. Control Synthesis under Temporal Logic Specifications

Temporal logic specifications play various critical roles in
control synthesis, particularly within the realm of single-robot

2

systems. Primarily, temporal logic formulas are utilized to
define task specifications. For instance, [19] employs tempo-
ral logic to articulate temporally extended objectives and to
respond to failures during learning from demonstrations. [20]
implement skill repair mechanisms when existing skills are
insufficient to satisfy LTL specifications. Similarly, [21] fo-
cuses on transferring skills across different LTL specifications.
Beyond task definition, temporal logic formulas are also
effective in representing constraints that dynamical systems
must adhere to. For instance, [22] introduces LTLDoG, a
diffusion-based policy for robot navigation that complies with
LTL constraints. [23] utilizes temporal logic to define dy-
namic constraints, ensuring the stability of walking trajectories
in bipedal robots. Additionally, [24] uses temporal logic to
impose constraints on switching protocols, enabling a single
agent to robustly track multiple targets.

In the realm of multi-robot systems governed by LTL
task specifications or constraints, LTL formulas are generally
categorized into local and global forms. One strategy, as
demonstrated in studies such as [25–27], involves assigning
LTL tasks locally to each individual robot within the team.
Alternatively, a global LTL specification can be designated for
the entire team. When global LTL specifications are employed,
they may either explicitly allocate tasks to specific robots [28–
35, 21, 36] or leave task assignments unspecified among the
robots [37–41]. This latter approach aligns with the problem
addressed in our current work.

Global specifications that do not explicitly assign tasks
to robots typically require decomposition to facilitate task
allocation. This decomposition can be achieved through three
primary methods: (a) The most common technique, used in
works such as [42–51], involves breaking down a global
specification into multiple tasks by leveraging the transition
relations within the automaton, which graphically represents
an LTL formula. (b) As demonstrated in [38, 52], the second
approach utilizes BMC techniques [53] to develop a Boolean
Satisfaction or Integer Linear Programming (ILP) model. This
model simultaneously handles task allocation and implicitly
decomposes tasks within a unified framework. (c) The third
method, proposed by [54], interacts directly with the syntax
tree of LTL formulas to divide the global specification into
smaller, more manageable sub-specifications.

However, most of the aforementioned methods either adopt
a hierarchical framework, where task allocation is determined
first followed by low-level plan synthesis—without ensuring
the feasibility at the low level—or they employ a simultaneous
task allocation and planning approach to guarantee complete-
ness, but they primarily address discrete environments and
action models, which may be suitable for mobile robots but
are not applicable to robotic arms. In contrast, our work
distinguishes itself by performing simultaneous task allocation
and planning while directly considering continuous dynamics.

III. PRELIMINARY

Notation: Let R denote the set of all real values, [K] =
{1, . . . ,K} denote the set of integers from 1 to K and | · |

denote the cardinality of a set.

A. Shorest paths in Graphs of Convex Sets (GCS)

In this section, we introduce the shortest path formulation
in GCS. It is introduced in [11] and applied to robot motion
planning problems in [9]. The goal is to find the minimum-
cost path from a start vertex to a target vertex in a graph. [11]
defines a Graph of Convex Sets as a directed graph G = (V, E)
with vertices V and edges E . Each vertex v ∈ V is associated
with a convex set Xv and a point xv ∈ Xv , each edge
e = (u, v) ∈ E is associated with a non-negative and convex
function le(xu, xv) and a convex constraint (xu, xv) ∈ Xe.
For a fixed start vertex s and target vertex t, we are seeking a
path p as a sequence of vertices that connect the start vertex s
and t through the subset Ep of the edges E . Denoting the set
of all paths in the graph G as P , the shortest path problem in
GCS states as follows:

min
∑

e=(u,v)∈Ep

le(xu, xv)

s.t. p ∈ P,
xv ∈ Xv, ∀v ∈ p,
(xu, xv) ∈ Xe, ∀e = (u, v) ∈ Ep.

(1)

Although the shortest path problem (SPP) in the GCS is
NP-hard, an efficient mixed-integer convex program (MICP)
formulation was proposed in [11]. This MICP has a very
tight convex relaxation, meaning the optimal result can be
efficiently solved by convex optimization. The GCS has been
further extended to robotic motion planning around obstacles,
as detailed in [9]. The results demonstrate that GCS is a
robust trajectory optimization framework, capable of encoding
various costs and constraints.

B. Linear Temporal Logic

Linear Temporal Logic (LTL) [8] is a type of formal logic
whose basic ingredients are a set of atomic propositions π ∈
AP , the boolean operators, conjunction ∧ and negation ¬, and
temporal operators, next ⃝ and until U . LTL formulas over
AP abide by the grammar

ϕ ::= true | π | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1 U ϕ2. (2)

For brevity, we abstain from deriving other Boolean and
temporal operators, e.g., disjunction ∨, implication⇒, always
□, eventually ♢, which can be found in [8].

An infinite word σ over the alphabet 2AP is defined as an
infinite sequence σ = π0π1 . . . ∈ (2AP)ω , where ω denotes
an infinite repetition and πk ∈ 2AP , ∀k ∈ N. The language
Words(ϕ) = {σ|σ |= ϕ} is defined as the set of words that
satisfy the LTL formula ϕ, where |=⊆ (2AP)ω × ϕ is the
satisfaction relation. In this work, we focus on a particular
subset of LTL formulas known as syntactically co-safe LTL, or
sc-LTL for short [55]. As established by [55], any LTL formula
encompassing only the temporal operators ♢ and U and written
in positive normal form (where negation is exclusively before
atomic propositions) is classified under syntactically co-safe

3

formulas. Sc-LTL formulas can be satisfied by finite sequences
followed by infinite repetitions. This characteristic makes sc-
LTL apt for modeling and reasoning about systems with finite
durations, such as those found in the robotics field. Any sc-
LTL formula can be converted into a Deterministic Finite
Automaton (DFA).

Definition 3.1: (Deterministic Finite Automaton (DFA) [8])
A DFA A of a sc-LTL formula ϕ over 2AP is defined as a
tuple A(ϕ) =

(
Q,Σ, δ, q0,QF

B
)
, where

• Q is the set of states;
• Σ = 2AP is an alphabet;
• δ ⊆ Q×Σ×Q is the transition relation with |δ(q, σ)| ≤ 1

for all states q ∈ Q and all symbols σ ∈ Σ;
• q0 ∈ Q is the unique initial state;
• QF ⊆ Q is a set of accepting/final states.

C. Hierarchical sc-LTL

Definition 3.2: (Hierarchical sc-LTL [10]) Hierarchical
sc-LTL is structured into K levels, labeled as L1, . . . , LK ,
arranged from the highest to the lowest. Each level Lk, where
k ∈ [K], contains nk sc-LTL formulas. The hierarchical sc-
LTL can be represented as Φ =

{
ϕik | k ∈ [K], i ∈ [nk]

}
,

where ϕik denotes the i-th sc-LTL formula at level Lk. The
hierarchical sc-LTL adheres to the following rules:

1) Every formula at a given level Lk, for k ∈ [K − 1], is
derived from the formulas at the next lower level Lk+1.

2) Every formula at any level other than the highest (i.e.,
k = 2, . . . ,K) is included in exactly one formula at the
next higher level Lk−1.

3) Atomic propositions are used exclusively within the for-
mulas at the lowest level LK .

Example 1: (Hierarchical sc-LTL) The following hierar-
chical sc-LTL specifications state that completing tasks a and
b and c, and c should not be the last one to be finished:

L1 : ϕ11 = ♢ϕ12 ∧ ¬ϕ12 U ϕ22
L2 : ϕ12 = ♢a ∧ ♢b (3)

ϕ22 = ♢c.

Let Φk denote the set of formulas at level Lk with k ∈
[K]. The symbol ϕik is referred to as composite proposition
if it is inside a formula, and is referred to as specification
otherwise. A specification at the lowest level K is called a leaf
specification. Given the presence of multiple specifications in
hierarchical sc-LTL, a state-specification plan associates each
robot state with a sc-LTL specification that a specific robot is
executing.

Definition 3.3: (State-Specification Plan [10]) A state-
specification plan with a horizon h, represented as τ ,
is a timed sequence τ = τ0τ1τ2 . . . τh. Here, τ i =
((si1, ψ

i
1), (s

i
2, ψ

i
2), . . . , (s

i
n, ψ

i
n)) is the collective state-

specification pairs of n robots at the i-th timestep, where sir
is state of robot r, and ψi

r ∈ ΦK ∪ {ϵ}, with ϵ indicating the
robot’s non-involvement in any leaf specification at that time.

D. Convex Set (CS)-based Transition System

For simplicity, we assume that the configuration space
dimension for each robot is the same, denoted by d. For
a multi-robot system composed of n robots, the CS-based
transition system is defined as follows.

Definition 3.4: (CS-based Transition System) A CS-based
multi-robot transition system (TS) is defined as T =
(S,∆, S0,L):

• S ⊂ Rnd represents the set of convex sets of configura-
tion states where all robots are guaranteed to be collision-
free.

• ∆ ⊆ S × S is the transition relation, where (S, S′) ∈ ∆
if the sets S and S′ are either overlapping or adjacent.

• L : S → 2AP is the labeling function, which maps any
two configuration states within the same convex set to
the same sets of labels, i.e., L(s) = L(s′) = L(S) for
all S ∈ S and for any s, s′ ∈ S. With a slight abuse of
notation, we apply L to a convex set and any state within
the convex set.

• S0 ∈ S is the convex set that includes the initial
configuration state (s01, . . . , s

0
n).

IV. PROBLEM FORMULATION

In this section, we introduce the problem formulation for
multi-robot hierarchical temporal logic task and motion plan-
ning.

Definition 4.1: (Trajectory) A trajectory for robot i defined
as ρi : R+ → Rd is a function that maps any t ∈ R+ in time
to a robot configuration s ∈ Rd.

Problem 1: Consider a n-robot system with initial con-
figuration s0 ∈ Rnd, and hierarchical sc-LTL specifications
Φ, the hierarchical temporal logic task and motion planning
problem requires finding the collision-free robot trajectories
ρ = [ρ1, . . . , ρn] with minimum-cost that satisfy the hierar-
chical sc-LTL specifications. The planning problem is shown
as follows:

min
ρ=[ρ1,...,ρn]

J(ρ) (4a)

s.t. Trace(ρ) |= Φ, (4b)
ρi(t) ∩ ρj(t) = ∅, ∀i, j ∈ [n], t ∈ R+, (4c)
ρi(t) ∩ O = ∅, ∀i ∈ [n], t ∈ R+, (4d)

ρi(0) = s0i , ∀i ∈ [n]. (4e)

where O represents obstacles, and Trace returns the trace of
trajectories by applying labeling function L to each state in
the trajectories ρ.

We assume the cost J in (4a) is smooth and strictly convex.
It can be any convex function of trajectory ρ. For example, the
cost can be the path length and include derivatives of states.
The first constraint (4b) ensures the trajectories satisfy the task
specification expressed as hierarchical sc-LTL specifications.
The second constraint (4c) and third constraint (4d) ensure
non-convex collision-avoidance constraints, requiring the robot

4

Fig. 2: An architecture for hierarchical temporal logic task
and motion planning, where the transition system can be
precomputed offline.

to avoid collisions with itself and the surrounding environment.
To deal with those non-convex collision-avoidance constraints,
inspired by trajectory optimization [9], we mitigate those
collision avoidance constraints by requiring the robot to move
through a collection of safe convex sets S1, S2, ... ⊂ Rnd that
do not collide with obstacles. The last constraint (4e) imposes
initial conditions for each robot.

V. APPROACH

In this section, we present our approach to the problem 1.
The basic idea of our method involves several key steps: First,
we construct the labeled convex set regions in configuration
space to apply hierarchical sc-LTL specification to multi-robot
motion planning. To ensure the existence of a feasible path
between these convex set regions, we proposed a rapidly
exploring random tree (RRT)-guided method to construct the
connected convex set regions to connect those labeled convex
set regions. Using these convex sets and their labels, we then
construct the CS-based transition system for multi-robots, as
introduced in Section V-A. Second, we convert the hierarchical
sc-LTL specification into a Deterministic Finite Automaton
(DFA) and create a product graph by taking the product of
the CS-based transition system and the DFA, as described in
Section V-B. Next, to mitigate the computational complexity
associated with the potentially large product graph, we imple-
ment a graph pruning technique to simplify the problem based
on task specifications, as outlined in Section V-C. Finally,
in Section V-D, we solve the pruned product graph using
the mixed integer convex program (MICP) and extend our
optimization framework to handle multi-robot handover tasks.
The overall architecture of our multi-robots task and motion
planning algorithm is illustrated in Fig. 2. For a static envi-
ronment, the CS-based transition system can be precomputed
offline, while the remaining modules are computed online.

A. Construct CS-based Transition System for Multi-robots

To build a CS-based transition system defined in Def. 3.4,
we begin by constructing labeled convex sets, represented as
Slabel, for each atomic proposition π ∈ AP , ensuring that
L(Slabel) = π. Subsequently, given any two labeled convex sets
Si

label and Sj
label, we create a collection of connected convex

sets, denoted as Si,jconnect to establish a feasible pathway between
Si

label and Sj
label, if possible.

The process of constructing labeled convex sets, as outlined
in Alg. 1, proceeds as follows: Initially, for a multi-robot

Algorithm 1: Construct a labeled convex set
Input: Multi-robot system plant,

atomic proposition π
Output: Labeled joint configuration slabel, labeled

convex set Slabel
1 slabel ← CalLabeledConfiguration(π) ;
2 Slabel ← IRIS-NP(plant, slabel) ;
3 return slabel, Slabel;

(a) (b) (c)

Fig. 3: An example of generating the labeled convex region
for a multi-robot system. The atomic proposition is target a.
In Fig. 3(a), the atomic proposition π is used to compute
the labeled joint configuration slabel through robot inverse
kinematics. In this configuration, the bottom robot reaches
the position labeled as target a, while the configurations of
the remaining robots are unconstrained. Using slabel as a seed
point, the IRIS-NP algorithm can generate a convex set region
that contains this seed point. The sampled configurations inside
the convex region are shown in Fig. 3(b). Note that not all
configurations of the bottom robot ensure reaching target a.
Fig. 3(c) illustrates the labeled convex region Slabel generated
by adding the bottom robot’s end-effector position constraints
in IRIS-NP algorithm, ensuring that all configurations in the
labeled convex region satisfy the atomic proposition target a.

system and a given atomic proposition π, we compute a con-
figuration slabel that satisfies the specified atomic proposition
π [line 1]. This configuration is typically determined through
robot inverse kinematics. Following this, we generate a labeled
convex set Slabel starting with slabel as the seed point, meaning
that this configuration is contained within the convex set.
In this work, convex sets are constructed using the IRIS-NP
algorithm [56], which ensures that any configuration within the
convex set is free from collisions. However, IRIS-NP does not
guarantee that every configuration in the convex set satisfies
the atomic proposition π. To address this limitation, we
incorporate additional configuration constraints in the IRIS-
NP algorithm to ensure that all configurations within Slabel
satisfy the atomic proposition π [line 2]. An example of
this algorithm applied to a four-robot manipulator system is
depicted in Fig. 3. One such additional constraint is that the
robot’s end-effector is at a specific location.

After generating the labeled convex sets S, we construct a
sequence of connected convex sets Si,jconnect to ensure connectiv-
ity between any two labeled convex sets, if possible. For high-
dimensional degree-of-freedom (DoF) multi-robot systems,

5

Fig. 4: A 2D example for collision-free convex set construc-
tion. The orange blocks represent obstacles. Given the robot’s
start configuration sstart and goal configuration starget, IRIS-
RRT algorithm uses RRT path (black line) as a guide to
approximate the connected convex sets to connect the start
and goal configurations. In the graph, sseedi represents the seed
configuration anchoring the i-th convex set, which is depicted
as a rectangle surrounded by dashed lines. Each pair of seed
configuration and its corresponding convex set is highlighted
in the same color. Note that the seed configurations typically
lie at the intersections of the path generated by RRT and the
previous convex sets. Moreover, the path generated by RRT
does not need to be smooth or optimal, as it primarily serves
to guide the construction of convex sets.

generating these connected convex regions randomly in the
robot configuration space might not successfully establish
connections between the labeled convex sets, and the optimal
solution might not traverse these convex sets. To address this
challenge, we introduce the IRIS-RRT algorithm, outlined in
Alg. 2. Initially, Algorithm 2 uses Rapidly-exploring Random
Tree (RRT) method [57] to find a feasible path between the
two labeled configurations [line 1]. Subsequently, it constructs
a set of connected convex sets along this path, spacing the seed
configuration states at maximum intervals along the feasible
path to minimize the number of connected convex sets [lines 4-
9]. To this end, starting with the initial configuration state
silabel, its convex set Si

label is used to initialize Si,jconnect. The
next step involves identifying another configuration state along
the feasible path that is the farthest from silabel yet still within
Si,jconnect. This configuration state then serves as a new seed,
and the process is iteratively continued to extend Si,jconnect until
it contains the goal configuration sjlabel. Note that the RRT
method in Alg. 2 could be replaced by any motion planning
algorithm. A 2D example of the construction of convex sets
by IRIS-RRT is shown in Fig. 4.

B. Construct Product Automaton

In what follows, let δ(q, q′) denote the propositional formula
logic that enables the transition from q to q′ in DFA. We
begin by addressing the challenge of constructing a graph,
referred to as the total product DFA, for hierarchical sc-LTL
specifications.

First, for a set of specifications that are on the same
hierarchical level, we construct their product DFA.

Definition 5.1: (Product DFA (PDFA)) Consider a DFA
Ai

k = (Qi
k,Σ

i
k, δ

i
k, q

i
0,k,Q

F,i
k) representing the i-th specifi-

Algorithm 2: IRIS-RRT
Input: Multi-robot system plant, start configuration

silabel and target configuration sjlabel
Output: Sets of connected convex sets Si,jconnect

1 path← RRT(silabel, s
j
label) ;

2 Si,jconnect ← IRIS-NP(plant, silabel) ;
3 sold

seed ← silabel;
4 while sjlabel is not in convex sets Si,jconnect do
5 maximize

snew
seed

distance(sold
seed, s

new
seed) ;

6 subject to snew
seed ∈ S

i,j
connect and snew

seed ∈ path ;
7 Siris ← IRIS-NP(plant, sseed) ;
8 Si,jconnect ← S

i,j
connect ∪ {Siris} ;

9 sold
seed ← snew

seed ;
10 return Si,jconnect;

cation at level k. The PDFA for level k, denoted as Ak =
(Qk,Σk, δk, q0,k,QF

k), is defined as follows:
• Qk = Q1

k × . . . × Qnk

k is the Cartesian product of
automaton states across the specifications;

• Σk = Σ1
k × . . . × Σnk

k is the combined set of symbols
from all DFAs at this level;

• δk ⊆ Qk×Σk×Qk is the transition relation, where a tran-
sition

(
(q1k, . . . , q

nk

k), (σ1
k, . . . , σ

nk

k), (q1
′

k , . . . , q
n′
k

k)
)
∈

δk exists if (qik, σ
i
k, q

i′

k) ∈ δik for all i ∈ [nk];
• q0,k = (q10,k, . . . , q

nk

0,k) is the initial state of the product
automaton;

• QF
k = QF,1

k × . . .×QF,nk

k is the set of accepting states.

For leaf-level specifications, Σi represents the set of atomic
propositions, while for non-leaf specifications, Σi includes the
composite propositions from the next level down. Note that,
by designing Σ to be the product of individual symbols, each
DFA is determined separately as to whether a transition occurs.

Definition 5.2: (Total PDFA (TPDFA)) The TPDFA A =
(Q,Σ, δ, q0,QF) for hierarchical sc-LTL specifications is de-
tailed as follows:

• Q = QK × . . .×Q1 represents the set of product states
across all levels;

• Σ = ΣK × . . .× Σ1 denotes the set of symbols;
• δ ⊆ Q × Σ × Q defines the transition relation, where a

transition ((qK , . . . , q1), (σK , . . . , σ1), (q
′
K , . . . , q

′
1)) ∈ δ

is valid if:
– (qK , σK , q

′
K) ∈ δK ;

– σk = (σ1
k, . . . , σ

nk

k) for all k ∈ [K − 1], with
σi
k = {ϕik+1 | qik+1 ∈ Q

F,i
k+1}, representing the

specifications at the immediate lower level k+1 that
are fulfilled;

– (qk, σk, q
′
k) ∈ δk for each k ∈ [K − 1];

• q0 = (q0,K , . . . , q0,1) is the initial product state;
• QF = {q ∈ Q | q11 ∈ Q

F,1
1 } is the set of accepting

product states.

The transition relation in Def. 5.2 is constructed iteratively,

6

(a) ϕ1
1 (b) ϕ1

2 (c) ϕ2
2

(d) TPDFA

Fig. 5: The DFAs corresponding to specifications have their
accepting states highlighted in yellow. In Fig. 5(d), only the
automaton states for leaf specifications are displayed since the
states of non-leaf specifications can be deduced from those
of the leaf levels. Within the diagram, the labels inside the
nodes and along the edges are derived from two parts: the
first component is from ϕ12 and the second from ϕ22. There
are four paths leading from the initial state (init1, init1) to the
accepting state (accept4, accept2). Notably, in all these paths,
the symbol c is not the last one to be fulfilled.

starting from the ground level upwards. For leaf specifica-
tions, transitions are determined based on atomic propositions,
whereas for non-leaf specifications, transitions are defined
by the truth of composite propositions from the immediately
lower level.

Example 1: continued (TPDFA) The corresponding DFAs
for each specification and the TPDFA for the hierarchical sc-
LTL specified in (3) are depicted in Fig. 5.

Definition 5.3: (Product Automaton (PA)) The product
automaton combining TPDFA and TS is denoted as P =
(QP ,ΣP , δP , qP,0,QF

P), where:
• QP = S × Q represents the set of product states,

combining the states of TS and TPDFA;
• ΣP = Σ is the set of symbols used in the transitions;
• δP ⊆ QP×ΣP×QP is the transition relation, as defined

in Def. 5.5;
• LP = L is the labeling function that maps states to the

set of satisfied propositions;
• qP,0 = (S0, q0) is the initial product state, combining the

initial state of PTS with that of TPDFA;
• QF

P = S ×QF is the set of accepting product states.

Before we detail the transition relation, we present how to
determine whether the observations LP(S), produced by n
robots, can enable transitions (qK , q

′
K) within leaf specifica-

tions. This incorporates the task allocation into the edges of
the product automaton. The key idea is to verify whether it is
possible to construct σK = (σ1

K , . . . , σ
m
K) from LP(S) in a

manner that allows (qK , σK , q′K) ∈ δK as outlined in Def. 5.2.

Definition 5.4: (Model) Given the set of atomic proposi-
tions LP(S) generated by n robots and a transition (qK , q

′
K)

within m leaf specifications at level K, we deem LP(S) to
be a model of the propositional logic formulas δK(qK , q

′
K) =(

δ1K(q1K , q
1
K

′), . . . , δmK (qmK , q
m
K

′)
)

if it satisfies the following
conditions:

1) LP(S) does not falsify any propositional logic formula
δiK(qiK , q

i
K

′), for i ∈ [m].
2) The leaf specifications are divided into two groups ΦKv

and ΦKϵ such that the total number of specifications
|ΦKv | + |ΦKϵ | = m, with |ΦKv | = v. Each group may
contain any number of specifications, including none.

3) The set of robots is partitioned into several groups
R1, . . . ,Rv and Rϵ such that the sum of robots in these
groups equals the total number of robots,

∑v
i=1 |Ri| +

|Rϵ| = n, and each group Ri and Rϵ can include zero
or multiple robots.

4) For each i ∈ [v], there is a one-to-one correspondence
between a leaf specification ϕiK ∈ ΦKv and a group of
robots Ri∗ , where the atomic propositions generated by
robots in Ri∗ meet the propositional logic requirement of
ϕiK , expressed as LR(S) |= δiK(qiK , q

i
K

′). Here, LR(S)
represents the set of atomic propositions related to Ri∗ .
In this case, σi

K = LR(S).
5) Robots in Rϵ are not assigned any leaf specifications,

indicating they are idle.
6) There is no correspondence between any leaf specification

in ΦKϵ and any robots, but the propositional logic for
each specification in ΦKϵ can be trivially fulfilled by ∅,
meaning that currently, no robots are engaged with the
specifications in ΦKϵ . In this case, σi

K = ∅.

Condition 1) requires that no leaf specification is violated by
the collective robot configuration. Condition 2) categorizes
robots into those actively executing tasks and those not as-
signed to any task. Similarly, Condition 3) classifies tasks
into those currently being performed by robots and those
temporarily on hold. Condition 4) connects robots actively
executing tasks and tasks currently being performed, allowing
for scenarios where multiple robots collaborate on a single
task, such as jointly carrying a heavy load. Conditions 5)
and 6) pertain to situations involving idle robots and tasks

7

that are not currently assigned to any robot, respectively.

Definition 5.5: (Transition Relation) A transition from one
product state qP = (S, q) to another q′P = (S′, q′) occurs if
the following conditions are satisfied:

• (S, S′) ∈ ∆, as specified in Def. 3.4;
• For each level k from 1 to K − 1, the transition

(qk, σk, q
′
k) ∈ δk, as defined in Def. 5.2.

• The set of propositions LP(S) is a model of the transition
δK(qK , q

′
K), as outlined in Def. 5.4, indicating that the

observed propositions at S satisfy the necessary condi-
tions for the transition at the highest level K.

C. Prune PA

To manage the large size of the PA and facilitate the
optimization process, we implement pruning techniques to
reduce its complexity.

Definition 5.6: (Essential State) Given a pair of transitions
qP → q′P where qP = (S, q) and q′P = (S′, q′), the product
state qP is defined as an essential state if the automaton states
differ, that is, if q ̸= q′.

An essential state marks that there has been progress at
the task level. Based on this concept, the specifics of the
pruning process are detailed in Alg. 3. The procedure starts by
expanding the set of essential states to include both the initial
and accepting states [lines 1-2]. Using these essential states
as the product space skeleton, we then establish connections
between each pair of essential states where possible, utilizing
intermediate states that navigate the robots through their
configuration states according to a path determined by the RRT
[lines 7-8].

Algorithm 3: Construct essential PA
Input: PA P = (QP ,ΣP , δP , qP,0,QF

P)
Output: Essential PA Pe = (Qe

P ,ΣP , δ
e
P , qP,0,QF

P)
1 Q∗

P ← GetEssentialStates(QP ,ΣP) ;
2 Q∗

P ← QP ∪ {qP,0} ∪ QF
P ;

3 Qe
P ← Q∗

P ;
4 for qP = (S, q) ∈ Q∗

P do
5 for q′P = (S′, q′) ∈ Q∗

P do
6 if q → q′ then
7 path← RRT(S, S′) ;
8 Qe

P ← Qe
P ∪ {q′′P = (S′′, q′′) ∈ QP |S′′ ∈

path ∧ q′′ = q′} ;
9 δeP = GetTransitions(δP ,Qe

P) ;
10 return Pe = (Qe

P ,ΣP , δ
e
P , qP,0,QF

P);

D. Optimization Formulation and Extension for Multi-robot
Handover

Upon building the product automaton P , we define a target
product state qtarget

P , which serves as the endpoint for all
accepting product states within QF

P . The graph of the product
automaton, denoted as G = (V, E), is used to structure the

optimization problem by focusing exclusively on the configu-
ration aspect of the product states, as the automaton aspect of
the product states shapes the graph structure. This approach
effectively transforms the problem into motion planning in the
configuration space [9]. The initial configuration state is de-
rived from the initial product state, and the target configuration
state corresponds to qtarget

P . This setup is tackled through an
optimization problem formulated with convex programming
as shown in equation (1), aiming to establish a viable path
from the initial to the target configuration states. In what fol-
lows, we extend this framework to accommodate multi-robot
pick-and-place tasks, which include handover interactions, by
introducing relevant constraints.

Consider a scenario with l objects. We define binary de-
cision variables bi,j to indicate whether robot i holds object
j, with each vertex v in V having an associated variable bi,jv .
When bi,jv = 1, it means that robot i is actively transporting
object j. In contrast, bi,jv = 0 indicates that the robot i
is not engaged in transporting the object j. The handover
constraints governing the transfer of objects between robots
are categorized into three types: incoming constraints, conflict
constraints, and labeled convex set constraints.

1) Incoming Constraints: Incoming constraints depict sce-
narios in which robots transport objects to various (interme-
diate) locations. For any given vertex v ∈ V , these constraints
depend on whether the robot i, for each i ∈ [n], is engaged in
a handover with another robot. There are two possible cases
for incoming constraints:

(a) Robot i is not conducting the handover. This scenario
is governed by an equality constraint that ensures the conti-
nuity of possession, meaning object j remains with robot i
during transit when no handover occurs:

bi,jv′ = bi,jv , ∀v′ ∈ V ′. (5)

Here, v′ refers to vertices in the set V ′, which are predecessors
leading into the vertex v.

It should be noted that if the optimal path in the product
graph does not traverse certain vertices, the binary decision
variables associated with those vertices, bi,jv , must be set to 0,
and the incoming constraint (5) becomes irrelevant. To ensure
that the incoming constraint is only applied along the optimal
path, let the binary variable ye indicate whether the optimal
path includes the edge from v to v′ [11]. We adopt the Big-M
method to establish a connection between the optimal path
and the binary decision variable bi,jv . The revised form of
the incoming constraint (5), when robot i is not engaged in
handover within the vertex v, is expressed as follows:

M(ye − 1) ≤ (bi,jv′ − bi,jv) ≤M(1− ye), ∀v′ ∈ V ′, (6)

where M is typically a large positive integer. We set M = 2
to ensure a tighter formulation.

(b) Robot i is conducting the handover. Assume i′,
where i′ ∈ [n], is the robot with which the handover is
being conducted. The following constraint ensures that the two
robots successfully transfer object j,∀j ∈ [l], upon reaching

8

the location by toggling the decision variables associated with
each robot at the respective vertices:

bi
′,j
v′ = 1− bi,jv , ∀v′ ∈ V ′. (7)

To ensure that the incoming constraint (7) for robot han-
dovers is applied strictly along the optimal path, we utilize
the Big-M method to reformulate the handover constraint for
robot i in the vertex v as follows:

M(ye − 1) ≤ (bi
′,j
v′ − bi,jv) ≤M(1− ye), ∀v′ ∈ V ′. (8)

The constraint (8) effectively prevents a handover from occur-
ring unless the path is optimal.

2) Conflict Constraints: To ensure that each robot handles
no more than one object at a time, and each object is managed
by only one robot simultaneously, the following constraints
apply: ∑

j∈[l]

bi,jv ≤ 1, ∀v ∈ V,∀i ∈ [n], (9a)

∑
i∈[n]

bi,jv ≤ 1, ∀v ∈ V,∀j ∈ [l]. (9b)

3) Labeled Convex Set Constraints: For a product automa-
ton P associated with labeled convex set that is labeled with
a robot, denote by i, whose state aligns with the location of
object j and the vertex v ∈ V ′:

bi,jv = 1. (10)

Those handover constraints ensure an orderly and conflict-
free transfer of objects among the robots. Due to the involve-
ment of binary decision variables in the handover constraints,
we solve the optimization Problem 1 using mixed-integer
convex programming (MICP).

VI. THEORETICAL ANALYSIS

Theorem 6.1: (Soundness) The returned path p satisfies the
hierarchical sc-LTL specification Φ.

Proof: The proof consists of two steps. In the first step,
we construct a state-specification plan τ as in Def. 3.3 from the
path p. In the second step, we prove that the state specification
plan τ satisfies the hierarchical sc-LTL ϕ.

To obtain the state-specification plan τ , the goal is to pair
each robot with a leaf specification that it is undertaking, if
any. Note that each point in the path p is a product state q
composed of a configuration state s = (s1, . . . , sn) and a prod-
uct DFA state qP = (qK , . . . , q1) with qK = (q1K , . . . , q

m
K).

Let q′P = (q′K , . . . , q
′
1) with q′K = (q1

′

K , . . . , q
m′

K) denote the
next state of qP in the path p. As stated in Def. 5.5, LP(S)
is a model of δK(qK , q

′
K). Next, we analyze depending on

conditions in Def. 5.4. Specifically, condition 1) ensures that
no leaf specification is violated. Furthermore, we pair the leaf
specification ϕiK ∈ ΦKv with every robot in the corresponding
set Ri∗ , according to condition 4), otherwise, we pair robot
i ∈ Rϵ with null specification ϵ according to condition 5).

Given the state-specification plan τ , the labels generated by
the sequence of configuration states satisfy not only the leaf

specifications, but also the non-leaf specifications, according
to the transition relation in Def. 5.5,. Moreover, it reaches an
accepting product state where the top-most specification ϕ11
is satisfied, implying that the hierarchical sc-LTL is satisfied
according to semantics in [10, Algorithm 1].

Definition 6.2: (Incompatible specifications) Two sc-LTL
specifications are considered incompatible if there exists a path
that satisfies one but inevitably violates the other, regardless
of how the path is extended.

For instance, ϕ1 = ♢a and ϕ2 = ¬a U b are incompatible,
as a path that produces label a but not label b satisfies ϕ1 while
violating ϕ2. This path cannot be extended to satisfy ϕ2. We
say that a hierarchical sc-LTL specification Φ is considered
compatible if it does not include any pair of leaf specifications
that are mutually incompatible.

Theorem 6.3: (Completeness) Assuming the hierarchical
sc-LTL Φ is compatible, up to the space decomposition and
trajectory parameterization, our approach returns a path that
satisfies Φ.

Proof: The CS-based product transition system (Def. 3.4)
encompasses all possible behaviors of the robot system, while
the total product of DFAs encompasses all solutions to fulfill
the hierarchical sc-LTL (Def. 5.2). The construction of PA
(Def.5.3) is based on the concept of a model (Def.5.4). In
particular, condition 1) excludes propositional logic formulas
that contradict each other. Since we consider only compatible
hierarchical sc-LTL specifications, no contradictory proposi-
tional logic formulas arise. Conditions 2)-6) ensure the exis-
tence of a feasible task allocation. Consequently, the product
system (Def. 5.3) includes all behaviors of the robot system
that conform to the hierarchical sc-LTL. According to [9], by
increasing the number of convex sets and the degree of Bézier
curves to enhance the approximation, the MICP is guaranteed
to find a path.

VII. EXPERIMENTS

We evaluate our approach across a variety of multi-robot
task scenarios, including planar robot motion planning, coor-
dination among multiple robotic manipulators with handovers,
quadrupedal mobile robots performing manipulator handovers,
and a structured industrial environment featuring several robots
and a conveyor system. All experiments were conducted using
the Drake [58], and executed on a desktop computer equipped
with an Intel i9 processor and 32GB of RAM. To solve Mixed-
Integer Convex Programming (MICP), we use the MOSEK
solver [59] via the Drake interface. The running times for
the algorithm of all scenarios are detailed in Table I. We
precompute the CS-based transition system offline and report
computation times for online modules, including PA construc-
tion, PA pruning, and MICP solving. The demonstration video
is available in the supplementary materials.

A. Planar Motion Planning Case
The planar motion planning scenario depicted in Fig. 6

involves a robot tasked with collecting five keys to navigate

9

TABLE I: Algorithm Running Time.

Tasks Figure Construct PA (s) Prune PA (s) Solver Time (s)
two-robot motion planning 7(a) 0.106 0.002 5.531
two-robot handover 7(b) 0.061 0.001 0.277
four-robot handover (scenario 1) 1 12.711 0.007 11.601
four-robot handover (scenario 2) 8 7.262 0.003 7.691
four-robot handover with obstacle (scenario 3) 9 8.355 0.003 6.291
four-robot handover (scenario 4) 10 1.959 0.002 5.327
four-robot handover (scenario 5) 11 7.587 0.004 6.131
Spot-robot handover 12 0.074 0.001 0.378
two-robots with conveyor 13 5.738 0.004 1.019

Fig. 6: The door puzzle problem, where the blue dot represents
the initial robot location. [7, 60].

through the corresponding doors. This benchmark example,
noted for its complex specifications as proposed in [7], origi-
nally required transforming the sc-LTL formula into DFA. The
conversion process from sc-LTL to DFA is known to exhibit
double-exponential complexity [61], leading to a prolonged
conversion time. By employing hierarchical sc-LTL, our ap-
proach significantly reduces this complexity. The original flat
LTL formula is

ϕ =

5∧
i=1

¬doori U keyi ∧ ♢goal. (11)

The hierarchical sc-LTL is represented as

L1 : ϕ11 =

5∧
i=1

ϕi2 ∧ ♢goal

L2 : ϕi2 = ¬doori U keyi, i = 1, . . . , 5.

(12)

Hierarchical sc-LTL enhances the efficiency of representing
temporal logic specifications, resulting in quicker conversion
times and faster motion planning. This improved efficiency
is evident in the performance comparison shown in Table II.
Our approach yields a solution with a cost almost identical to
that of the method described in [7], yet it achieves this result
approximately 40 times faster.

B. Multi-robot Motion Planning and Handover Case

To illustrate the scalability of our method in high-
dimensional spaces, we evaluated it in four systems with
different tasks: a system involving two robotic manipulators

Method
Time (s)

Cost
Sc-LTL to DFA Construct PA Solver Total

[7] 401.6 94.4 2.6 498.7 774.7
Ours 8.0 4.0 0.9 13.0 774.2

TABLE II: Performance comparison between our method
and [7].

(Fig. 7), a system with four robotic manipulators with multiple
objects(Figs. 8-11), a system with robotic manipulators and
mobile robots (Fig. 12), and a structured industrial environ-
ments with robotic manipulators and conveyor (Fig. 13).

1) Two robotic manipulators: In the initial example, two
robotic manipulators are tasked to pick up an object from
target 1 and place it on target 2. The hierarchical sc-LTL
specification for this scenario is articulated as follows:

L1 : ϕ11 = ♢ϕ12
L2 : ϕ12 = ♢(target1 ∧ ♢target2).

(13)

Our planning algorithm uses Bézier splines to navigate a
valid path, ensuring C2 continuity for smooth trajectories. An
L2 norm for the length of the joint path is also integrated
to optimize for the shortest possible route. We evaluate our
planner in two distinct pick-and-place scenarios. In the first
scenario, depicted in Fig. 7(a), where targets 1 and 2 are
equidistant from both robots, our planner decides only the
robot with the shortest path to execute the task, leaving the
other robot stationary to minimize the total path length. In
the second scenario, illustrated in Fig. 7(b), each robot ex-
clusively accesses one of the targets, necessitating a handover
to complete the task. Consequently, one robot picks up the
object and passes it to the other, which then places it at target
2. These tests confirm that our planner adeptly identifies the
most efficient strategy autonomously, eliminating the need for
pre-defined orders on robot movement or handover timing.

2) Four robotic manipulators with multiple objects: The
second example shows our planner in a more complex scenario
and task specification that involves four KUKA iiwa robotic
manipulations, with a 28 degree of freedom (DOF). We
evaluated our algorithm in several distinct scenarios to assess
its performance under different task specifications.

a) Scenario 1: In the first scenario, the robot was aligned
in a linear arrangement, illustrated in Fig. 1. The robots are
assigned to pick up three objects from specifically labeled

10

(a) Both robots can reach the target positions 1 and 2.

(b) The left robot can only reach target 1, and the right robot can only reach
target 2. The handover is necessary to complete the task.

Fig. 7: Example setup with two robotic manipulators with one
movable object.

pickup positions (targets 1, 2, and 3) and place them in
corresponding placement positions (targets 4, 5, and 6). The
hierarchical sc-LTL specification for this task is given by:

L1 : ϕ11 = ♢(ϕ12 ∧ ♢(ϕ22 ∧ ♢ϕ32))

L2 : ϕ12 = ♢(target1 ∧ ♢target4)

ϕ22 = ♢(target2 ∧ ♢target5)

ϕ32 = ♢(target3 ∧ ♢target6),

(14)

which states that the robot should pick up movable objects
from targets regions 1, 2, and 3, and place them in regions 4,
5, and 6 in order.

In this example, the planner does not take into account the
interactions between the gripper and objects, nor does it con-
sider the dynamics constraints of the robot trajectory. Instead,
the focus of our planner is on identifying a collision-free path
in the configuration space that satisfies the hierarchical sc-LTL
specifications within a 28-DOF system. This is a benchmark
example proposed in [4]. The problem was solved by nonlin-
ear trajectory optimization with smoothed discrete variables,
solving multi-robot handover with one object in 36.5 seconds.
However, this gradient-based method relies on local informa-

tion and often faces challenges in finding feasible trajectories
that deviate significantly from the initial guess, leading to
suboptimal solutions with unnecessary joint movements. In
contrast, the considerably more complex specification with
three objects handover is solved by our proposed method in
approximately 11.6 seconds. In addition, our method provides
a sound, complete, and lower-cost solution without relying on
an initial guess of the solver.

b) Scenario 2: In the second scenario, we designed a
different layout from Scenario 1, with the robots arranged
in a narrow rectangular formation. The hierarchical sc-LTL
specification is still (14). This case is more complex than the
previous one due to the narrow robot workspace, requiring
the planner to ensure collision avoidance and determine the
necessity of handovers between robots. The result is illustrated
in Fig. 8. Note that in Fig. 8(b) and (c), while two robotic
manipulators are transferring the yellow and red objects, the
bottom robot simultaneously moves to transfer the blue object,
effectively minimizing the overall completion time.

Fig. 8: Setup involving four robotic manipulators operating in
a rectangular formation. The robots are tasked with handling
three movable objects.

c) Scenario 3: In this scenario, the layout is the same as
Scenario 2, with the robots arranged in a narrow rectangular
formation. We introduce a conditional passable region in the
middle, as illustrated in Fig. 9. The task involves picking
up two objects from designated pickup positions (targets 1
and 2), placing them at the corresponding placement positions
(targets 3 and 4), and returning the object from target 3 to
target 1 while avoiding the conditional passable region. The

11

hierarchical sc-LTL specification is written as:

L1 : ϕ11 = ♢(ϕ12 ∧ ♢(ϕ22 ∧ ♢ϕ32))

L2 : ϕ12 = ♢(target1 ∧ ♢target3)

ϕ22 = ♢(target2 ∧ ♢target4)

ϕ32 = ♢(target3 ∧ ¬obstacle U target1).

(15)

Note that in Fig. 9(b) and (c), two robots perform the handover
of the yellow and blue objects within the passable regions
to minimize trajectory length. However, the robots avoid the
passable region when transferring the yellow object back, as
shown in Fig. 9(d).

Fig. 9: Setup involving four robotic manipulators operating in
a rectangular formation with a passable region (red).

d) Scenario 4: In the scenario, as illustrated in Fig. 10,
the robots are tasked with moving one object from target 1 to
target 3, and another object from target 2 to either target 4 or
target 5. The hierarchical sc-LTL specification for this task is
as follows:

L1 : ϕ11 = ♢(ϕ12 ∧ ♢ϕ22)

L2 : ϕ12 = ♢(target1 ∧ ♢target3)

ϕ22 = ♢(target2 ∧ ♢(target4 ∨ target5)).

(16)

Note that in Fig. 10(d), the robot places the blue object at
target 4 to minimize the trajectory length.

e) Scenario 5: In this scenario, as described in Fig. 11,
the robots are assigned three tasks involving picking up objects
from one location to another. For tasks 2 and 3, the robot is
allowed to execute either one of them. The hierarchical sc-LTL
specification for this task is as follows:

L1 : ϕ11 = ♢(ϕ12 ∧ ♢(ϕ22 ∨ ϕ32))
L2 : ϕ12 = ♢(target1 ∧ ♢target4)

ϕ22 = ♢(target2 ∧ ♢target5)

ϕ32 = ♢(target3 ∧ ♢target6).

(17)

The solution prioritizes completing task 3, as the bottom
robot is assigned to task 1 to pick up target 1. To minimize
completion time, the left robot is assigned to task 3 to
simultaneously pick up object 3, as the target 2 for task 2
is farther from the left robot.

Fig. 10: Setup involving four robotic manipulators operating
in a rectangular formation, tasked with handling three movable
objects.

3) Mobile robots and robotic manipulators: In prior ex-
periments, our focus was on stationary handovers between
manipulators. In this example, we explore handovers involving
mobile robots and robotic manipulators, using a Boston Dy-
namics Spot robot and a Kuka iiwa robot. The task is to move
the objects from target 1 to target 2, as depicted in Fig. 12.
The hierarchical sc-LTL specification for this task is defined
as follows:

L1 : ϕ11 = ♢ϕ12
L2 : ϕ12 = ♢(target1 ∧ ♢target2).

Given that the iiwa robot can access target 1 but not target 2,
a handover to the Spot robot is necessary. We assume that the
Spot robot has a floating base with 3 DoF for movement and a
6-DoF manipulator for handling tasks. The goal of planning is
to identify a collision-free trajectory that minimizes both the
path length (L2 norm) and the total time. Our proposed method
generated an optimal trajectory in just 0.378 seconds. In this
trajectory, the Spot robot operates at maximum speed and
performs a continuous handover with the iiwa robot, ensuring
a transition of the object without any stop.

4) Structured industrial environments with robotic manip-
ulators and conveyor: Lastly, we construct a factory setting
where two robotic manipulators are integrated with a conveyor

12

Fig. 11: Setup involving four manipulators operating in a
rectangular formation, tasked with handling three movable
objects.

Fig. 12: Example setup featuring a mobile robot paired with
manipulators tasked with handling a single movable object.

system, as illustrated in Fig. 13. This example is designed
to demonstrate the capability of our planner in structured
industrial environments. The task involves transporting three
objects using robotic manipulators and the conveyor system,
moving them from targets 1, 2, and 3 to targets 4, 5, and
6. The hierarchical LTL specification follows the formulation
in (14). Each robot has 7 DoF, and the conveyor has one DoF.
The objective of our planner is to generate a collision-free
trajectory in 15 DOF that minimizes the L2 norm of the path
length and the cycle times across all robots and conveyor. Our
planner successfully finds a time-optimal path in just 1.019
seconds.

Fig. 13: Example setup featuring two robotic manipulators and
one conveyor with three movable objects.

C. Robot Experiments

We demonstrate the deployment of our planner on real
robot hardware, using four WidowX 200 robots equipped
with two finger grippers. The hierarchical sc-LTL specifica-
tion follows the formulation (14). Our planner successfully
generates collision-free trajectories, which are then executed
via the ROS-based position controller provided by Tossen
Robotics [62]. The experimental result is illustrated in Fig. 14.

Fig. 14: A setup with four manipulators designed for pick-
and-place tasks.

D. Scalability

We assess the scalability of our proposed method by an-
alyzing solve times as the number of tasks increases, using
the four-robot manipulator setup described in Scenario 2.
Each task involves picking and placing a single object. The
source and target locations of objects are carefully chosen to
avoid the need for handovers. Tasks are evaluated in two set-
tings: with and without handover constraints. Since handover
constraints introduce binary decision variables, the problem
is solved using mixed-integer convex optimization. In the
absence of handover constraints, standard convex optimization
is sufficient. The results in Fig. 15 indicate that solve times
increase approximately linearly with the number of tasks when
handover constraints are enforced. In contrast, without han-
dover constraints, solve times scale more efficiently, exhibiting
sublinear performance.

13

Fig. 15: Scalability results of runtimes w.r.t number of tasks.

VIII. LIMITATIONS

In this section, we briefly outline the limitations of our
proposed approach.

A major drawback of our method is that the complexity
of MICP scales exponentially with the number of binary
variables [63]. The MICP solution for the original shortest path
problem in a graph of convex sets has a very tight convex re-
laxation. Therefore, this problem can often be solved globally
optimally with convex optimization and rounding. However,
to handle handover scenarios, we introduced additional integer
variables, which loosen the convex relaxation. As a result, our
proposed method uses MICP to solve the hierarchical temporal
logic TAMP problem with handover constraints. With the
increasing complexity of the hierarchical sc-LTL specification
and the number of convex sets in the transition system, the
MICP scales poorly. However, in practice, this does not appear
to be a significant concern. After simplifying the product graph
with our graph prune method, the optimal trajectory for a
28-DOF, four-robot system, involving 719 integer decision
variables, can be computed in under 10 seconds.

Another limitation of our approach is that we use the IRIS-
NP algorithm [56] to generate collision-free space convex
sets. The algorithm provides iterative procedures for inflating
convex regions of free space. However, the IRIS-NP algorithm
only has probabilistically certified that the convex region
is collision-free, and it may take a long time to generate
the region. In addition, the generated convex region will
change when the objects transfer from one robot to another.
Efficiently generating certified collision-free convex regions
in the configuration space and quickly adapting the region to
changes in collision geometry are important areas for future
research.

IX. CONCLUSIONS

We address the multi-robot task and motion planning
(TAMP) problem subject to hierarchical temporal logic specifi-
cations. The key idea of our method is to convert the optimal
planning problem into a shortest path problem in a product
graph, which is then solved using MICP. Unlike methods
based on nonlinear trajectory optimization, sampling-based

search, or learning-based approaches, our approach can handle
highly non-convex multi-robot motion planning challenges,
delivering solutions with sound and complete results within
reasonable solve times. Future directions include exploring
convex relaxations of MICP within this framework.

REFERENCES

[1] Zhigen Zhao, Shuo Cheng, Yan Ding, Ziyi Zhou,
Shiqi Zhang, Danfei Xu, and Ye Zhao. A survey of
optimization-based task and motion planning: from clas-
sical to learning approaches. IEEE/ASME Transactions
on Mechatronics, 2024.

[2] Fabien Lagriffoul, Dimitar Dimitrov, Julien Bidot,
Alessandro Saffiotti, and Lars Karlsson. Efficiently com-
bining task and motion planning using geometric con-
straints. The International Journal of Robotics Research,
33(14):1726–1747, 2014.

[3] Marc Toussaint and Manuel Lopes. Multi-bound tree
search for logic-geometric programming in cooperative
manipulation domains. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages
4044–4051. IEEE, 2017.

[4] Jimmy Envall, Roi Poranne, and Stelian Coros. Differ-
entiable task assignment and motion planning. In 2023
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2049–2056. IEEE, 2023.

[5] Rin Takano, Hiroyuki Oyama, and Masaki Yamakita.
Continuous optimization-based task and motion planning
with signal temporal logic specifications for sequential
manipulation. In 2021 IEEE international conference
on robotics and automation (ICRA), pages 8409–8415.
IEEE, 2021.

[6] Marc Toussaint. Logic-geometric programming: An
optimization-based approach to combined task and mo-
tion planning. In IJCAI, pages 1930–1936, 2015.

[7] Vince Kurtz and Hai Lin. Temporal logic motion plan-
ning with convex optimization via graphs of convex sets.
IEEE Transactions on Robotics, 2023.

[8] Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT press Cambridge, 2008.

[9] Tobia Marcucci, Mark Petersen, David von Wrangel, and
Russ Tedrake. Motion planning around obstacles with
convex optimization. Science robotics, 8(84):eadf7843,
2023.

[10] Xusheng Luo and Changliu Liu. Simultaneous task
allocation and planning for multi-robots under hierar-
chical temporal logic specifications. arXiv preprint
arXiv:2401.04003, 2024.

[11] Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and
Russ Tedrake. Shortest paths in graphs of convex sets.
SIAM Journal on Optimization, 34(1):507–532, 2024.

[12] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,
Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Integrated task and motion plan-
ning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

14

[13] Huihui Guo, Fan Wu, Yunchuan Qin, Ruihui Li, Keqin
Li, and Kenli Li. Recent trends in task and motion plan-
ning for robotics: A survey. ACM Computing Surveys,
2023.

[14] James Motes, Read Sandström, Hannah Lee, Shawna
Thomas, and Nancy M Amato. Multi-robot task and mo-
tion planning with subtask dependencies. IEEE Robotics
and Automation Letters, 5(2):3338–3345, 2020.

[15] Hejia Zhang, Shao-Hung Chan, Jie Zhong, Jiaoyang Li,
Sven Koenig, and Stefanos Nikolaidis. A mip-based ap-
proach for multi-robot geometric task-and-motion plan-
ning. In 2022 IEEE 18th International Conference on
Automation Science and Engineering (CASE), pages
2102–2109. IEEE, 2022.

[16] James Motes, Tan Chen, Timothy Bretl, Marco Morales
Aguirre, and Nancy M Amato. Hypergraph-based multi-
robot task and motion planning. IEEE Transactions on
Robotics, 2023.

[17] Tianyang Pan, Andrew M Wells, Rahul Shome, and
Lydia E Kavraki. A general task and motion plan-
ning framework for multiple manipulators. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3168–3174. IEEE, 2021.

[18] Jimmy Envall, Roi Poranne, and Stelian Coros. Differ-
entiable task assignment and motion planning.

[19] Yanwei Wang, Nadia Figueroa, Shen Li, Ankit Shah,
and Julie Shah. Temporal logic imitation: Learning
plan-satisficing motion policies from demonstrations. In
Conference on Robot Learning, pages 94–105. PMLR,
2023.

[20] Adam Pacheck and Hadas Kress-Gazit. Physically feasi-
ble repair of reactive, linear temporal logic-based, high-
level tasks. IEEE Transactions on Robotics, 2023.

[21] Xusheng Luo and Michael M Zavlanos. Transfer plan-
ning for temporal logic tasks. In 2019 IEEE 58th
Conference on Decision and Control (CDC), pages 5306–
5311. IEEE, 2019.

[22] Zeyu Feng, Hao Luan, Pranav Goyal, and Harold Soh.
Ltldog: Satisfying temporally-extended symbolic con-
straints for safe diffusion-based planning. arXiv preprint
arXiv:2405.04235, 2024.

[23] Zhaoyuan Gu, Rongming Guo, William Yates, Yipu
Chen, Yuntian Zhao, and Ye Zhao. Walking-by-logic:
Signal temporal logic-guided model predictive control
for bipedal locomotion resilient to external perturbations.
In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 1121–1127. IEEE, 2024.

[24] Duc M Le, Xusheng Luo, Leila J Bridgeman, Michael M
Zavlanos, and Warren E Dixon. Single-agent indirect
herding of multiple targets using metric temporal logic
switching. In 2020 59th IEEE Conference on Decision
and Control (CDC), pages 1398–1403. IEEE, 2020.

[25] Meng Guo and Dimos V Dimarogonas. Multi-agent
plan reconfiguration under local LTL specifications. The
International Journal of Robotics Research, 34(2):218–
235, 2015.

[26] Jana Tumova and Dimos V Dimarogonas. Multi-agent
planning under local LTL specifications and event-based
synchronization. Automatica, 70:239–248, 2016.

[27] Pian Yu and Dimos V Dimarogonas. Distributed motion
coordination for multirobot systems under ltl specifica-
tions. IEEE Transactions on Robotics, 38(2):1047–1062,
2021.

[28] Savvas G Loizou and Kostas J Kyriakopoulos. Automatic
synthesis of multi-agent motion tasks based on LTL
specifications. In 43rd IEEE Conference on Decision and
Control (CDC), volume 1, pages 153–158, The Bahamas,
December 2004.

[29] Stephen L Smith, Jana Tůmová, Calin Belta, and Daniela
Rus. Optimal path planning for surveillance with
temporal-logic constraints. The International Journal of
Robotics Research, 30(14):1695–1708, 2011.

[30] Indranil Saha, Rattanachai Ramaithitima, Vijay Ku-
mar, George J Pappas, and Sanjit A Seshia. Au-
tomated composition of motion primitives for multi-
robot systems from safe LTL specifications. In 2014
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1525–1532. IEEE, 2014.

[31] Yiannis Kantaros and Michael M Zavlanos. Sampling-
based control synthesis for multi-robot systems under
global temporal specifications. In 2017 ACM/IEEE
8th International Conference on Cyber-Physical Systems
(ICCPS), pages 3–14. IEEE, 2017.

[32] Yiannis Kantaros and Michael M Zavlanos. Distributed
optimal control synthesis for multi-robot systems un-
der global temporal tasks. In Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical
Systems, pages 162–173. IEEE Press, 2018.

[33] Yiannis Kantaros and Michael M Zavlanos. Sampling-
based optimal control synthesis for multirobot systems
under global temporal tasks. IEEE Transactions on
Automatic Control, 64(5):1916–1931, 2018.

[34] Yiannis Kantaros and Michael M Zavlanos. Stylus*:
A temporal logic optimal control synthesis algorithm
for large-scale multi-robot systems. The International
Journal of Robotics Research, 39(7):812–836, 2020.

[35] Yiannis Kantaros, Samarth Kalluraya, Qi Jin, and
George J Pappas. Perception-based temporal logic plan-
ning in uncertain semantic maps. IEEE Transactions on
Robotics, 38(4):2536–2556, 2022.

[36] Xusheng Luo, Yiannis Kantaros, and Michael M Za-
vlanos. An abstraction-free method for multirobot tem-
poral logic optimal control synthesis. IEEE Transactions
on Robotics, 37(5):1487–1507, 2021.

[37] Marius Kloetzer, Xu Chu Ding, and Calin Belta. Multi-
robot deployment from LTL specifications with reduced
communication. In 2011 50th IEEE Conference on
Decision and Control and European Control Conference,
pages 4867–4872. IEEE, 2011.

[38] Yasser Shoukry, Pierluigi Nuzzo, Ayca Balkan, Indranil
Saha, Alberto L Sangiovanni-Vincentelli, Sanjit A Se-
shia, George J Pappas, and Paulo Tabuada. Linear tem-

15

poral logic motion planning for teams of underactuated
robots using satisfiability modulo convex programming.
In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pages 1132–1137. IEEE, 2017.

[39] Salar Moarref and Hadas Kress-Gazit. Decentralized
control of robotic swarms from high-level temporal logic
specifications. In 2017 International Symposium on
Multi-robot and Multi-agent Systems (MRS), pages 17–
23. IEEE, 2017.

[40] Bruno Lacerda and Pedro U Lima. Petri net based multi-
robot task coordination from temporal logic specifica-
tions. Robotics and Autonomous Systems, 122:103289,
2019.

[41] Ziyang Chen and Zhen Kan. Real-time reactive
task allocation and planning of large heterogeneous
multi-robot systems with temporal logic specifications.
The International Journal of Robotics Research, page
02783649241278372, 2024.

[42] Philipp Schillinger, Mathias Bürger, and Dimos V Di-
marogonas. Simultaneous task allocation and planning
for temporal logic goals in heterogeneous multi-robot
systems. The International Journal of Robotics Research,
37(7):818–838, 2018.

[43] Philipp Schillinger, Mathias Bürger, and Dimos V Di-
marogonas. Decomposition of finite LTL specifica-
tions for efficient multi-agent planning. In Distributed
Autonomous Robotic Systems, pages 253–267. Springer,
2018.

[44] Fatma Faruq, David Parker, Bruno Laccrda, and Nick
Hawes. Simultaneous task allocation and planning under
uncertainty. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3559–
3564. IEEE, 2018.

[45] Thomas Robinson, Guoxin Su, and Minjie Zhang. Mul-
tiagent task allocation and planning with multi-objective
requirements. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent
Systems, pages 1628–1630, 2021.

[46] Xusheng Luo, Shaojun Xu, Ruixuan Liu, and Changliu
Liu. Decomposition-based hierarchical task allocation
and planning for multi-robots under hierarchical temporal
logic specifications. IEEE Robotics and Automation
Letters, 2024.

[47] Alberto Camacho, Eleni Triantafillou, Christian J Muise,
Jorge A Baier, and Sheila A McIlraith. Non-deterministic
planning with temporally extended goals: Ltl over finite
and infinite traces. In AAAI, pages 3716–3724, 2017.

[48] Alberto Camacho, R Toro Icarte, Toryn Q Klassen,
Richard Valenzano, and Sheila A McIlraith. LTL and
beyond: Formal languages for reward function specifica-
tion in reinforcement learning. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence
(IJCAI), pages 6065–6073, 2019.

[49] Philipp Schillinger, Mathias Bürger, and Dimos V Di-
marogonas. Hierarchical LTL-task mdps for multi-
agent coordination through auctioning and learning. The

International Journal of Robotics Research, 2019.
[50] Xusheng Luo and Michael M Zavlanos. Temporal logic

task allocation in heterogeneous multirobot systems.
IEEE Transactions on Robotics, 38(6):3602–3621, 2022.

[51] Zesen Liu, Meng Guo, and Zhongkui Li. Time minimiza-
tion and online synchronization for multi-agent systems
under collaborative temporal logic tasks. Automatica,
159:111377, 2024.

[52] Yunus Emre Sahin, Petter Nilsson, and Necmiye Ozay.
Multirobot coordination with counting temporal logics.
IEEE Transactions on Robotics, 2019.

[53] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Lat-
vala, and Viktor Schuppan. Linear encodings of bounded
LTL model checking. Logical Methods in Computer
Science, 2(5:5):1–64, 2006.

[54] Kevin Leahy, Austin Jones, and Cristian-Ioan Vasile.
Fast decomposition of temporal logic specifications for
heterogeneous teams. IEEE Robotics and Automation
Letters, 7(2):2297–2304, 2022.

[55] Orna Kupferman and Moshe Y Vardi. Model checking
of safety properties. Formal Methods in System Design,
19(3):291–314, 2001.

[56] Mark Petersen and Russ Tedrake. Growing convex
collision-free regions in configuration space using non-
linear programming. arXiv preprint arXiv:2303.14737,
2023.

[57] Steven M LaValle and James J Kuffner. Rapidly-
exploring random trees: Progress and prospects: Steven
m. lavalle, iowa state university, a james j. kuffner,
jr., university of tokyo, tokyo, japan. Algorithmic and
computational robotics, pages 303–307, 2001.

[58] Russ Tedrake and the Drake Development Team. Drake:
Model-based design and verification for robotics, 2019.
URL https://drake.mit.edu.

[59] The mosek optimization toolbox. version 9.0, mosek aps,
copenhagen, denmark., 2022. URL https://docs.mosek.
com/latest/toolbox/intro_info.html#.

[60] William Vega-Brown and Nicholas Roy. Admissible
abstractions for near-optimal task and motion planning.
arXiv preprint arXiv:1806.00805, 2018.

[61] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol.
Formal methods for discrete-time dynamical systems,
volume 89. Springer, 2017.

[62] https://github.com/Interbotix/interbotix_ros_
manipulators.

[63] Vince Kurtz and Hai Lin. A more scalable mixed-
integer encoding for metric temporal logic. IEEE Control
Systems Letters, 6:1718–1723, 2022. doi: 10.1109/
LCSYS.2021.3132839.

16

https://drake.mit.edu
https://docs.mosek.com/latest/toolbox/intro_info.html#
https://docs.mosek.com/latest/toolbox/intro_info.html#
https://github.com/Interbotix/interbotix_ros_manipulators
https://github.com/Interbotix/interbotix_ros_manipulators

	Introduction
	Related Works
	Task and Motion Planning
	Control Synthesis under Temporal Logic Specifications

	Preliminary
	Shorest paths in Graphs of Convex Sets (GCS)
	Linear Temporal Logic
	Hierarchical sc-LTL
	Convex Set (CS)-based Transition System

	Problem Formulation
	Approach
	Construct CS-based Transition System for Multi-robots
	Construct Product Automaton
	Prune PA
	Optimization Formulation and Extension for Multi-robot Handover
	Incoming Constraints
	Conflict Constraints
	Labeled Convex Set Constraints

	Theoretical Analysis
	Experiments
	Planar Motion Planning Case
	Multi-robot Motion Planning and Handover Case
	Two robotic manipulators
	Four robotic manipulators with multiple objects
	Mobile robots and robotic manipulators
	Structured industrial environments with robotic manipulators and conveyor

	Robot Experiments
	Scalability

	Limitations
	Conclusions

